Host Plant Utilization Within Family Ericaceae by the Andromeda Lace Bug Stephanitis takeyai (Hemiptera: Tingidae)¹

Shakunthala Nair², S. Kristine Braman² and D. A. Knauft³

Department of Entomology, University of Georgia 1109 Experiment Street, Griffin, GA 30223

Abstract

This study examined host plant utilization by the Andromeda lace bug, *Stephanitis takeyai* Drake and Maa, within the family Ericaceae. The preferred host of *S. takeyai* is the Japanese pieris, *Pieris japonica* (Thunb.) D. Don ex G. Don, but it has been reported to exhibit host alternation and also to occur on other unrelated host plants. We examined the acceptability of ten landscape and fruit plants belonging to the family Ericaceae (*Rhododendron calendulaceum*, *Rhododendron* 'Hampton Beauty', *Rhododendron* 'Autumn Empress', *Vaccinium arboreum*, *Vaccinium virgatum*, *Calluna vulgaris*, *Kalmia latifolia*, *Pieris floribunda*, *Pieris phillyreifolia* and *Pieris japonica* 'Temple Bells') to *S. takeyai*. In no-choice tests adult survival did not vary significantly among the taxa. Highest leaf damage was recorded on *P. japonica* and *R. calendulaceum*, while slight damage was noted on *V. arboreum* and *Rhododendron* 'Hampton Beauty'. In multi-choice tests adult presence on leaves did not vary significantly except on day 9, when adults were more numerous on 'Temple Bells'. Maximum leaf damage was recorded on *P. japonica*, 'Temple Bells'. Several plants like *Rhododendron* and *Vaccinium* spp., which may not be favorable hosts, could serve as reservoirs for the pest.

Index words: Pieris, Rhododendron, Vaccinium, Stephanitis takeyai, host utilization, Ericaceae.

Species used in this study: Pieris japonica; Pieris phillyreifolia; Pieris floribunda; Rhododendron calendulaceum; Rhododendron 'Hampton Beauty'; Rhododendron 'Autumn Empress'; Vaccinium arboreum; Vaccinium virgatum; Calluna vulgaris; Kalmia latifolia.

the family Ericaceae.

Introduction

Significance to the Nursery Industry

Pieris spp. belonging to the plant family Ericaceae, are handsome evergreen shrubs recognized by their glossy green leaves and clusters of urn-shaped flowers colored red, pink or white. They are particularly noted for the magnificent colors displayed by their spring foliage. Pieris are popular choices as landscape or foundation plants, shrub borders or incorporated with other evergreens. The major pest of Pieris is the Andromeda lace bug, Stephanitis takeyai. Although this pest has not been noticed as extensively as its close relative, the azalea lace bug, S. pyrioides, both species have importance as introduced pests. There are reports on the spread of S. takevai to several states since its introduction, and recent studies revealed differences in susceptibility of Pieris taxa to this pest. The genus Stephanitis is known to attack other ericaceous hosts and this increases its significance in commercial trade of plants. Little information is available on host plant utilization by these pests. Therefore it is essential to understand the host plant utilization by S. takeyai before its damage and spread assume greater proportions. Such information would be helpful in selecting plants for landscapes and adopting control approaches. This

²Graduate Student and Professor, respectively. Department of Entomology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223. kbraman@uga.edu.

³Professor. Department of Horticulture, University of Georgia, 1111 Plant Sciences Building, Athens, GA 30602. dknauft@uga.edu.

study examines host plant utilization by S. takeyai within

The Andromeda lace bug, Stephanitis takeyai Drake and

Maa, is an important pest of the ericaceous ornamental

plant Pieris D. Don spp. (12). Stephanitis takeyai adults and

nymphs, like other tingids, feed by piercing the leaf surface

and drawing out cell contents, which results in yellowish

white stipples and blotches on the upper leaf surfaces, and

on the lower surfaces oily black frass spots can be seen along

with the lace bug colonies. Lace bug feeding also reduces

photosynthetic efficiency of the leaves (6). In ornamental

plants like Pieris, which are valued for their foliage and

flowers, even slight damage to leaves can seriously affect

the market value prior to sale and can make the plant unat-

tractive in the landscape. Sometimes lace bug damage can

reach severe levels causing premature leaf shedding, drying

the genus Stephanitis, and monophagous species are sup-

posed to have developed later (25). This finding adds to the importance of more studies on *S. takeyai* and its relation to other members of the genus. *Stephanitis takeyai* has been reported to be polyphagous in Japan and other countries

where it has spread and established, attacking host plants of

Don ex G. Don, is the preferred and major reproductive host

of S. takeyai (20) from which the pest derives its common

exhibit non-obligate seasonal host alternation between P.

japonica and its other major host, the deciduous shrub Lyo-

The Japanese Andromeda, Pieris japonica (Thunb.) D.

In its country of origin Japan, S. takeyai is known to

Polyphagy is considered to be an ancestral character in

up of twigs or even the whole plant (20).

different unrelated families (24).

name.

¹Received for publication November 15, 2011; in revised form April 11, 2012. Partial funding for this project was provided by the Southern SARE program. Technical assistance provided by Jim Quick and Ryan McNeill during our screening experiments is greatly appreciated. Advice on statistical analysis of data by Jerry Davis is gratefully acknowledged. We are indebted to Dan Gilrein for providing adult *Stephanitis takeyai*, which we used to initiate our laboratory colonies.

belong to the family Ericaceae. The lace bugs feed on *P. japonica* during the winter and on *L. elliptica* during the summer. If *L. elliptica* is scarce, *S. takeyai* may continue to feed on *P. japonica* (24). *Stephanitis takeyai* has been reported to occur on persimmon (*Diospyros kaki* Thunb., Ebenaceae), camphor (*Cinnamomum camphora* (L.) J. Presl, Lauraceae), Chinese anise (*Illicium religiosum* Siebold & Zucc., Illiciaceae) (22), and also in Japanese pine stands (*Pinus densiflora* Siebold and Zucc. and *P. thunbergii* Parl., Pinaceae) (28) in Japan.

Stephanitis takeyai was first reported in North America in 1950 (3), and was later recorded on several unrelated host plants like Andromeda sp., Aperula sp., Cinnamomum sp., Lindera sp., Lyonia sp., Pieris sp. and Salix sp. (7). Bailey (5) recorded the occurrence of S. takevai on the rhododendron, R. calendulaceum (Michx.) Torr., when its branches were contiguous with those of P. japonica. Wheeler (29) reported spicebush (Lindera benzoin) and sassafras (Sassafras albidum) (Lauraceae) as hosts of S. takeyai. In Poland, plants within Hippocastanaceae, Magnoliaceae, Rosaceae, Saxifragaceae and Styracaceae are reported to be hosts for S. takeyai (21). These reports indicate the polyphagous nature of S. take yai which can be a cause for concern in the context of increasing commercial trade in plant material worldwide. Several plants, which may not be favorable hosts, could still serve as reservoirs for the pest. Hence a proper understanding of the host plant utilization of different plants by S. takeyai would be essential in choosing plants for gardens and landscapes and formulating management strategies. We undertook this study to evaluate host plant utilization by S. takeyai within the family Ericaceae and also confirm some of the earlier reports of host suitability.

Pieris spp., the major reproductive hosts of S. takeyai, are popular broad-leaved evergreen shrubs planted in landscapes and gardens for their attractive foliage and flowers (11). Japanese pieris (P. japonica) native to Japan, is the most commonly cultivated species which is also susceptible to S. takeyai. Mountain pieris (P. floribunda (Pursh) Benth. and Hook. f.) and P. phillyreifolia (Hook.) DC. (climbing fetterbush) are native to North America and are reported to be resistant to S. takevai (7, 16). The genus Rhododendron L. comprises a large group of over 1,000 species (1) of woody ornamentals mostly known for their showy flowers. We chose the cultivars Rhododendron 'Hampton Beauty', Rhododendron 'Autumn Empress' and the flame azalea R. calendulaceum to represent the genus. Azaleas are attacked by different pests among which the azalea lace bug S. pyrioides is predominant (12), but S. takeyai has not been listed as a problem to azalea cultivation. Although Bailey (5) reported occurrence on R. calendulaceum when its branches were contiguous with P. japonica, there are no reports about susceptibility to S.takeyai. Native ornamental and landscape plants like R. calendulaceum are currently being sought by homeowners with renewed interest which has also increased the availability of planting material (2). This change may result in changes in the pest scenario as well, since the native plants may show susceptibility to introduced pests. Vaccinium L. is a genus comprising over 150 species (1)of shrubs producing edible fruit, some of which are of commercial importance like the blueberry V. virgatum Aiton (rabbiteye blueberry). Vaccinium arboreum Marshall (sparkleberry) is a widespread diploid blueberry species native to the southeastern United States which has importance in breeding (13). Lace bugs have not been reported on these two species of *Vaccinium*. However, *Stephanitis oberti* Kol. has been reported on lingonberry (*V. vitis-idaea* L.) (18). The genus *Calluna* is monotypic, with the low-growing perennial shrub *C. vulgaris* (L.) Hull being the only species recorded in this genus (1). *Calluna vulgaris* is an effective colonist and thrives in heathlands, where it serves as food for livestock when the landscape is covered with snow (10). Lace bugs have not been reported on *Calluna* sp. *Kalmia latifolia* L. (mountain laurel) is an important evergreen component in the deciduous forests of the southern Appalachians (15), and is listed as a host for *S. pyrioides* (7) and also for *S. rhododendri* Horváth (4), but not for *S. takeyai*. We tested the acceptability of these ten plant species belonging to the family Ericaceae using no-choice and choice laboratory assays.

Materials and Methods

Plant materials. The selected ericaceous ornamental plants were obtained from plant nurseries near Griffin, GA, and various commercial nurseries. The plants were maintained in 11.4 liter (# 3) and 3.8 liter (# 1) pots in a screen house at the Experiment Station, Griffin, GA, with regular irrigation. Pesticides and fertilizers were not used in the screen house.

Lace bugs. Stephanitis takeyai colonies were initiated from a population obtained from a landscape setting in Long Island, NY, in April 2009. The colonies were maintained in plastic containers through the period of study at $27 \pm 1C$ and a photoperiod of 14:10 (L:D) h, on *Pieris* cultivars *P. japonica* 'Dodd's Crystal Cascade Falls', 'Temple Bells' and 'Scarlett O'Hara' (16). For conducting the assays, 5–10 day old adult lace bugs were collected in plastic tubes using an aspirator and then transferred to the assay dishes using a brush.

No-choice petri dish assays. Three mature leaves (fourth or fifth leaf from the bottom of a branch) of one plant species, placed in a petri dish of 11 cm diameter (VWR®) with their stalks covered sections of moist paper towel constituted one replication. Each plant species was replicated three times. Three adult lace bugs (at least 2 females) were released into each petri dish and the dish covered with its friction-fitting lid. The dishes were arranged in a randomized complete block design and placed under conditions of $27 \pm 1C$ and a photoperiod of 14:10 (L:D) h. Observations on number of bugs alive were taken at 2, 7, 9 and 13 days. After the exposure period the surviving adults were removed and the leaves were assessed for leaf damage using the number of frass spots, because frass spot numbers are highly correlated with leaf damage and served as an index for the amount of S. pyrioides feeding on azaleas (Ericaceae) (6). After damage assessment, the leaves were maintained under the same conditions as during the exposure period and observed daily for emergence of nymphs. This assay was performed twice in December 2010.

Multi -choice assays. Three mature leaves from one plant species (fourth or fifth leaf from the bottom of a branch) were placed together as a group, with their bases covered with sections of moist paper towel. Ten such groups of leaves representing the ten selected plants, placed in a circular pattern inside a large (30 cm diam) Petri dish constituted one replication and there were three such replications. The leaf

Table 1. No-choice assay for adult survival and leaf damage by S. takeyai on ericaceous hosts.

Таха	Adı	Adult survival (Number of adults)			Number of frass spots			
	Day 2	Day 7	Day 9	Day 13	Day 2	Day 7	Day 9	Day 13
Rhododendron calendulaceum	2.17ab ^z	1.67a	1.00a	0.67ab	16.78a	34.44a	42.89a	47.61a
Vaccinium arboreum	1.83bc	0.33b	0.17b	0.00c	1.06b	2.72b	3.50b	4.61b
Pieris floribunda	1.17c	0.33b	0.17b	0.17bc	0.11b	0.22b	0.22b	0.22b
Calluna vulgaris	1.50bc	0.33b	0.00b	0.00c	0.00b	0.11b	0.11b	0.11b
Kalmia latifolia	1.33bc	0.33b	0.00b	0.00c	0.06b	0.06b	0.06b	0.06b
Pieris japonica 'Temple Bells'	2.83a	2.17a	1.50a	1.17a	16.67a	37.89a	49.94a	56.50a
Pieris phillyreifolia 'Little Leaf'	1.67bc	0.50b	0.00b	0.00c	0.11b	0.11b	0.11b	0.11b
Rhododendron 'Autumn Empress'	1.17c	0.50b	0.17b	0.17bc	0.56b	0.78b	0.78b	0.83b
Rhododendron 'Hampton Beauty'	1.67bc	0.83b	0.33b	0.50bc	0.06b	3.11b	4.00b	4.56b
Vaccinium virgatum	1.17c	0.50b	0.17b	0.00c	0.00a	1.00b	1.00b	1.00b
F	2.95	5.01	7.37	5.00	13.78	25.11	25.67	31.07
Р	0.0068	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001

^zMeans in the same column bearing different letters are significantly different ($\alpha = 0.05$).

groups were arranged randomly within the circular pattern in each replication. Twenty adult lace bugs (ten or more females) were released into each petri dish and the dish covered with its friction-fitting lid. All the petri dishes were placed inside a growth chamber under conditions of $27 \pm 1C$ and a photoperiod of 14:10 (L:D) h. Observations on number of bugs present on each of the leaves was recorded one hour after releasing the bugs, and then again at the start of each observation on the 2nd, 7th, 9th and 13th day. After the 13th day the surviving adults were removed and the leaves were assessed for leaf damage using the number of frass spots as an index of feeding (6). After damage assessment, the leaves were placed back in their positions and maintained under the same conditions as during the exposure period and observed daily for emergence of nymphs. Nymphs were counted and removed as and when they were observed.

Statistical procedures. The experiments used a one-way randomized complete block design. The replications were considered as the block factor. Data (adult survival, leaf damage and nymph emergence in no-choice assays; adult presence on leaves, leaf damage and nymph emergence in choice assays) were subjected to analysis of variance (ANOVA) using the general linear model procedure of SAS (19). Means were separated with Fisher's protected least significant difference (LSD) test.

Results and Discussion

No-choice petri dish assays. Highest adult survival on day 2 in no-choice assays was observed on *P. japonica* 'Temple Bells' and *R. calendulaceum* (Table 1) and a similar trend was seen on all following days of observation. These two plants showed significantly higher adult survival than all the other plants. Lace bugs also fed more heavily on these two taxa as indicated by the number of frass spots on the leaves. Among the lesser damaged plants, *V. arboreum* and *Rhododendron* 'Hampton Beauty' showed slightly higher numbers of frass spots, whereas *Pieris floribunda, Calluna vulgaris, Kalmia latifolia* and *P. phillyreifolia* 'Little Leaf' consistently showed very low or no evidence of feeding, and the differences between them were not statistically significant. These taxa also showed very low adult survival.

Multi-choice assays. Multiple choice trials clearly indicated the preference of the lace bugs for *P. japonica* 'Temple Bells' (Table 2) which showed the highest numbers of frass spots on all four days of observation. It was interesting to note that *R. calendulaceum* did not show significant feeding in the presence of *P. japonica* 'Temple Bells'. The two Vaccinium species, *V. virgatum* and *V. arboreum* were the other taxa that showed slight but non-significant damage which was similar to that on all the other non-damaged taxa. Adult

Table 2. N	Aean number of frass spots l	by <i>S. takeyai</i> in multi-choice assa	v with ericaceous hosts (averag	es from 3 replications).

Таха	Day 2	Day 7	Day 9	Day 13
Rhododendron calendulaceum	1.00b ^z	1.22b	2.56b	3.89b
Vaccinium arboreum	0.00b	0.56b	2.00b	4.89b
Pieris floribunda	0.00b	0.00b	0.00b	0.00b
Calluna vulgaris	0.00b	0.00b	0.00b	0.00b
Kalmia latifolia	0.00b	0.00b	0.00b	0.00b
Pieris japonica 'Temple Bells'	11.67a	21.56a	43.33a	89.56a
Pieris phillyreifolia 'Little Leaf'	0.00b	0.00b	0.00b	0.00b
Rhododendron 'Autumn Empress'	0.00b	0.00b	0.00b	0.00b
Rhododendron 'Hampton Beauty'	0.00b	0.00b	0.00b	0.00b
Vaccinium virgatum	2.00b	4.56b	8.78b	13.33b
F	5.14	9.03	8.22	10.16
Р	< 0.0001	< 0.0001	< 0.0001	< 0.0001

^zMeans in the same column bearing different letters are significantly different ($\alpha = 0.05$).

Table 3. Mean number of S. takeyai adults present on leaves in multi-choice assay with ericaceous hosts (averages from 3 replications).

Таха	Day 0	Day 2	Day 7	Day 9	Day 13
Rhododendron calendulaceum	0.44a ^z	0.22a	0.44a	0.22b	0.56a
Vaccinium arboreum	0.11a	0.22a	0.33a	0.22b	0.33a
Pieris floribunda	0.67a	0.33a	0.22a	0.44b	0.44a
Calluna vulgaris	0.33a	0.56a	0.56a	0.11b	0.22a
Kalmia latifolia	0.56a	0.22a	0.11a	0.11b	0.33a
Pieris japonica 'Temple Bells'	0.44a	0.56a	0.56a	1.11a	0.67a
Pieris phillyreifolia 'Little Leaf'	0.56a	0.33a	0.44a	0.33b	0.22a
Rhododendron 'Autumn Empress'	0.11a	0.22a	0.33a	0.00b	0.22a
Rhododendron 'Hampton Beauty'	0.00a	0.56a	0.33a	0.44b	0.56a
Vaccinium virgatum	0.11a	0.11a	0.22a	0.22b	0.11a
F	1.43	0.77	0.67	2.72	0.91
Р	0.1879	0.6476	0.7308	0.0082	0.5228

^zMeans in the same column bearing different letters are significantly different ($\alpha = 0.05$)

presence on leaves did not vary significantly among the taxa (Table 3) except on day 9, where the most adults were found on *P. japonica* 'Temple Bells'.

Nymph emergence was observed only on *P. japonica* 'Temple Bells' in most replications in both no-choice and choice trials (Table 4). However, *R. calendulaceum*, and *Rhododendron* 'Hampton Beauty' showed nymph emergence in one replication each in no-choice Trial 1. The nymphs on *R. calendulaceum* survived till adulthood.

The ten plant species that we chose for our screening assays represent the diversity in the family Ericaceae. The methodology we used is consistent with those previously used in studies that examined host plant susceptibility to lace bugs, and we conducted both no-choice and choice assays (26, 27). Among the three Pieris species tested, P. floribunda and P. phillyreifolia were not acceptable to S. takeyai for feeding or oviposition and P. japonica "Temple Bells' was the most preferred host, consistent with earlier observations (8, 16, 20). Leaf damage on R. calendulaceum was similar to damage on the most preferred taxon P. japonica 'Temple Bells' in no-choice assays, whereas in the multichoice assays it was not severely damaged. Such behavior by insects has been reported in bioassays (23). Stephanitis takeyai was recorded earlier on R. calendulaceum, when its branches were contiguous with those of *P. japonica* (5) but this report does not describe the nature of damage or its pest status on R. calendulaceum. Our observations confirm

this report and show that S. take yai can feed and reproduce on *R. calendulaceum* when its preferred host is absent, but in the presence of its preferred host it may not attack R. calendulaceum. Hybrid evergreen azaleas were found to be suitable feeding and breeding hosts for S. takeyai, and the possibility that the pest could develop into a late season threat to azalea production has also been suggested (17). In our assays we recorded slight, non-significant damage to both azaleas tested viz., Rhododendron 'Hampton Beauty' and Rhododendron 'Autumn Empress' in no-choice tests and no damage in multi-choice tests. We also recorded nymph emergence in Rhododendron 'Hampton Beauty' in one replicate of the no-choice test. Slight leaf damage was also observed on both Vaccinium species. Thus, our results show that S. takevai can potentially survive on Rhododendron and Vaccinium species in conditions where its preferred host is absent. Calluna vulgaris and K. latifolia recorded very low or no damage in both no-choice and multi-choice assays. Both these plants are known to possess various allelopathic effects (14) on other plants, and tannins and other antifeedant principles (9) which may have a role in their avoidance by insects.

Our results document the susceptibility of selected ericaceous plants to *S. takeyai*. This information has not been reported earlier. Information on the host reactions under laboratory conditions will be helpful in selecting hosts to monitor the populations of new pests like *S. takeyai* during

Table 4.	Mean number of S. takeyai nymphs emerged in no-choice and multi-choice assays with ericaceous hosts.
10010 11	international of strandy and in the ended and indice about strand of the ended as in state

Таха	Trial 1 (No-choice)	Trial 2 (No-choice)	Multi-choice trial
Rhododendron calendulaceum	0.56b ^z	0.00b	0.00b
Vaccinium arboreum	0.00b	0.00b	0.00b
Pieris floribunda	0.00b	0.00b	0.00b
Calluna vulgaris	0.00b	0.00b	0.00b
Kalmia latifolia	0.00b	0.00b	0.00b
Pieris japonica 'Temple Bells'	11.67a	20.56a	19.33a
Pieris phillyreifolia 'Little Leaf'	0.00b	0.00b	0.00b
Rhododendron 'Autumn Empress'	0.00b	0.00b	0.00b
Rhododendron 'Hampton Beauty'	0.56b	0.00b	0.00b
Vaccinium virgatum	0.00b	0.00b	0.00b
F	7.98	10.54	6.30
Р	< 0.0001	< 0.0001	< 0.0001

^zMeans in the same column bearing different letters are significantly different ($\alpha = 0.05$)

pest surveys. The results from our studies may be different from those observed in natural conditions owing to presence of other plants or influence of other abiotic factors. However they will be useful in predicting potential hosts of *S. takeyai* and also other *Stephanitis* lace bugs. Further testing of more ericaceous host plants, and plants of other related and unrelated families mentioned in the literature as potential hosts needs to be conducted, to determine the actual host range of this pest.

Literature Cited

1. (USDA ARS) US Department of Agriculture, Agricultural Research Service. 2011. Germplasm Resources Information Network (GRIN) [Online Database]. National Germplasm Resources Laboratory, Beltsville, MD.

2. Ault, J. 2003. Breeding and development of new ornamental plants from North American native taxa. Acta Hort. (ISHS) 624:37–42.

3. Bailey, N.S. 1950. An Asiatic tingid new to North America (Heteroptera). Psyche 57:143–145

4. Bailey, N.S. 1959. Additions to the bioecology of the New England Tingidae and Piesmidae (Heteroptera). Psyche 66:63–69.

5. Bailey, N.S. 1974. Additional notes on *Stephanitis takeyai* in New England (Heteroptera: Tingidae). Psyche 81:534–536.

6. Buntin, G.D., S.K. Braman, D.A. Gilbertz, and D.V. Phillips. 1996. Chlorosis, photosynthesis, and transpiration of azalea leaves after azalea lace bug (Heteroptera: Tingidae) feeding injury. J. Econ. Entomol. 89:990–995.

7. Drake, C.J. and F.A. Ruhoff. 1965. Lacebugs of the world: a catalog (Hemiptera: Tingidae). Chinches de encaje del mundo: un catálogo (Hemiptera: Tingitidae). US Nat. Mus. Bull. 243:1–634.

8. Dunbar, D.M. 1974. Bionomics of the andromeda lacebug, *Stephanitis takeyai*, pp. 277–289. *In*: R.L. Beard (ed.), 25th Anniversary Memoirs, Connecticut Entomological Society, New Haven, CT.

9. Elnaggar, S.F., R.W. Doskotch, T.M. Odell, and L. Girard. 1980. Antifeedant diterpenes for the gypsy-moth larvae from *Kalmia latifolia* — isolation and characterization of 10 grayanoids. J. Nat. Prod. 43:617–631.

10. Gimingham, C.H. 1989. Heather and heathlands. Bot. J. Linn. Soc. 101:263–268.

11. Heriteau, J. 2006. Complete Trees, Shrubs and Hedges. Creative Homeowner, Upper Saddle River, NJ.

12. Johnson, W.T. and H.H. Lyon. 1991. Lace bugs of broad-leaved evergreens and sages. pp. 424–429. *In*: W.T. Johnson and H.H. Lyon (eds.), Insects that Feed on Trees and Shrubs, 2nd ed. Comstock Pub. Associates, Ithaca, NY.

13. Lyrene, P.M. 2011. First report of *Vaccinium arboreum* hybrids with cultivated highbush blueberry. Hortscience 46:563–566.

14. Mallik, A.U. 1987. Allelopathic potential of *Kalmia angustifolia* to black spruce (*Picea mariana*). Forest Ecol. Manag. 20:43–51.

15. Monk, C.D., D.T. McGinty, and F.P. Day. 1985. The ecological importance of *Kalmia latifolia* and *Rhododendron maximum* in the deciduous forest of the southern Appalachians. Bull. Torrey Bot. Club 112:187–193.

16. Nair, S. 2011. *Stephanitis* lace bugs affecting ericaceous plants: Host range, resistance mechanisms and management. Ph.D. Thesis. The University of Georgia, Athens, GA.

17. Neal Jr, J.W. 1988. Unusual oviposition behavior on evergreen azalea by the andromeda lace bug *Stephanitis takeyai* (Drake and MAA) (Heteroptera: Tingidae). Proc. Entomol. Soc. Wash. 90:52–54.

18. Paal, T. 2006. Lingonberry (*Vaccinium vitis-idaea* L.) research in Estonia: An overview. *In*: L.L. daFonseca and F.R. Muñoz (eds.), Proc. VIIIth Internat. Symp. on Vaccinium Culture, Spain. Acta Hort. (ISHS)715:203–217

19. SAS Institute. 2003. SAS® System (version 9.1) for Windows. SAS Institute, Cary, NC.

20. Schread, J.C. 1968. Control of lace bugs on broadleaf evergreens. Bull. Conn. Agric. Exp. Stn. 684:1–7.

21. Soika, G.M. and G.S. Labanowski. 1999. The andromeda lace bug - a new pest in Poland. Ochrona Roslin 43:14–15.

22. Takeya, C. 1963. Taxonomic revision of the Tingidae of Japan, Korea, the Ryukyus and Formosa. Part (2) Hemiptera. Mushi 36:41–75.

23. Tingey, W.M. 1986. Techniques for evaluating plant resistance to insects, pp. 342. *In*: J.R. Miller and T.R. Miller (eds.). Insect-plant Interactions. Springer-Verlag, New York, NY.

24. Tsukada, M. 1994a. Seasonal host alternation by the andromeda lace bug, *Stephanitis takeyai* (Heteroptera: Tingidae) between its two main host-plant species. Pop. Ecol. 36:219–224.

25. Tsukada, M. 1994b. Zymogram comparisons between eleven species of Japanese lace bugs (Heteroptera: Tingidae). Appl. Entomol. Zool. 29:63–70.

26. Van Driesche, R.G. and T.J. Murray. 2004. Overview of testing schemes and designs used to estimate host ranges., pp. 68–89. *In*: R. G. Van Driesche and R. Reardon (eds.). Assessing Host Ranges for Parasitoids and Predators Used for Classical Biological Control: A Guide to Best Practice. USDA Forest Service, Morgantown, WV.

27. Wang, Y., C.D. Robacker, and S.K. Braman. 1998. Identification of resistance to azalea lace bug among deciduous *Azalea* taxa. J. Am. Soc. Hortic. Sci. 123:592–597.

28. Watanabe, H. 1983. Effects of repeated aerial applications of insecticides for pine-wilt disease on arboreal arthropods in a pine stand [Japanese red pine and black pine]. J. Jap. For. Soc. 65:282–287.

29. Wheeler, Jr, A.G. 1977. Spicebush and sassafras as new North American hosts of andromeda lace bug, *Stephanitis takeyai* (Hemiptera: Tingidae). Proc. Entomol. Soc. Wash. 79:168–171.