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Abstract
Accurate methods to predict the naturalization of non-native woody plants are key components of risk-management programs being 
considered by nursery and landscape professionals. The objective of this study was to evaluate four decision-tree models to predict 
naturalization (fi rst tested in Iowa) on two new sets of data for non-native woody plants cultivated in the Chicago region. We identifi ed 
life-history traits and native ranges for 193 species (52 known to naturalize and 141 not known to naturalize) in two study areas 
within the Chicago region. We used these datasets to test four models (one continental-scale and three regional-scale) as a form of 
external validation. Application of the continental-scale model resulted in classifi cation rates of 72–76%, horticulturally limiting 
(false positive) error rates of 20–24%, and biologically signifi cant (false negative) error rates of 5–6%. Two regional modifi cations to 
the continental model gave increased classifi cation rates (85–93%) and generally lower horticulturally limiting error rates (16–22%), 
but similar biologically signifi cant error rates (5–8%). A simpler method, the CART model developed from the Iowa data, resulted in 
lower classifi cation rates (70–72%) and higher biologically signifi cant error rates (8–10%), but, to its credit, it also had much lower 
horticulturally limiting error rates (5–10%). A combination of models to capture both high classifi cation rates and low error rates will 
likely be the most effective until improved protocols based on multiple regional datasets can be developed and validated.
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Signifi cance to the Nursery Industry
Nursery and landscape professionals continue to search 

for new woody landscape plants that will provide consumers 
with visual interest and diversity in a variety of managed 
settings. Interest in identifying and propagating additional 
native species helps to address consumer demand for new 
plant materials. At the same time, broader use of new, non-
native species is likely to continue. Expanding the palette of 
both native and non-native species used in the landscape is 
of concern to scientists, managers of natural areas, horticul-
turists, and some members of the general public due to the 
potential for widely used introductions to become invasive 
pests. Although relatively few of these non-native woody 
species will naturalize, and even fewer are likely to become 
invasive, invasions can have signifi cant impacts and their 
control is diffi cult and costly. One alternative to lengthy test 

periods before new woody plants are released for introduction 
is the use of predictive modeling to assess risk associated 
with certain plants. Use of models that predict plant inva-
siveness (which classify species into categories of ‘accept’, 
‘reject’, or ‘analyze further’) could allow time-consuming 
and expensive fi eld screening to be focused only on species 
of greatest concern or those for which basic information is 
lacking. This paper describes efforts to fi nd accurate, rapid, 
and relatively easy-to-use methods for identifying species 
that could become invasive pests. Our results suggest that 
the power and accuracy of regional-scale models that include 
both life-history and geographic-risk components make 
them very useful as part of an overall risk-management 
program.

Introduction
Many useful, non-native species of woody plants have 

been imported and disseminated in the United States for 
commercial, conservation, and ornamental purposes (15, 
22, 23). Although relatively few of these species have be-
come naturalized, and fewer still can be defi ned as invasive, 
controlling the spread of those that have disrupted natural 
plant communities or agricultural systems is very diffi cult 
and often costly (28). A high percentage of invaders were 
originally introduced for horticultural use (1), giving horti-
culturists a critical role in the prevention of future invasive 
threats. For all parties involved in the introduction of new 
landscape plants, this responsibility is particularly salient 
given the growth of global trade and high demand for new 
cultivars and the importation of new taxa (4, 15).

Identifying a reliable method for accurately predicting 
potential invasiveness for otherwise desirable exotic species 
is a rapidly growing area of research. For example, a recent 
search of the BIOSIS Previews database identifi ed 64 peer-
reviewed articles published in scientifi c journals between 
1990 and 2008 that address the topic of risk assessment for 
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invasive, terrestrial plants (excluding genetically-modifi ed 
organisms). Thirty-three of those articles were published 
between 2006 and 2008. Predictive models support the 
development of effective risk-management programs for 
invasive species (16), and are critical for providing informa-
tion that enables more time-consuming or expensive work 
(fi eld screening, containment, or eradication) to be focused 
on the highest-risk species (3, 16).

Among the most frequently cited predictive models for 
risk assessment are an Australian Weed Risk Assessment 
(WRA) protocol described by Pheloung et al. (27) and a North 
American woody plant risk-assessment model developed by 
Reichard and Hamilton (29). Efforts to apply these models to 
regions beyond their original scope have rapidly expanded 
in recent years (5, 12, 16, 17, 21, 44). Other studies have 
examined the expected economic benefi ts resulting from 
the use of risk-assessment protocols (18, 30), and tested the 
relative ease of model implementation (12, 13, 16), in addi-
tion to evaluating the utility and accuracy of the protocols 
themselves.

Existing predictive models usually assign each species in 
question to one of three categories: ‘accept’, where the risk 
of invasion is low; ‘reject’, where the risk is high; or ‘further 
analysis’, where fi eld monitoring or additional information is 
needed. These categories then can be tested against a priori 
categories of non-native plants already introduced (12, 13, 29, 
44) to estimate both the power and accuracy of the models 
by determining classifi cation and error rates.

For woody plants, there is considerable evidence that 
plant adaptation and distribution in the temperate United 
States strongly refl ects regional variation in climate (33), 
especially as related to moisture balance and extreme tem-
perature events, and to soils and photoperiod regimens (40). 
Therefore, predictive models that recognize traits important 
for woody-plant naturalization on a regional basis (11, 26) 
should be more powerful and accurate than those based solely 
on national or continental data. For example, limitations in 
the effectiveness of a continental model were noted when 
that model was applied to a single state. Widrlechner et al. 
(44) examined the effi cacy of Reichard and Hamilton’s (29) 
continental model, by using it to test 100 non-native woody 
plants widely cultivated in Iowa; the resulting classifi cation 
rate was only 65% and the error rate was 20% (44).

Widrlechner et al. (44) developed and tested three ad-
ditional models that combined plant life-history traits 
(including those from the continental model (29), along 
with fl eshy, bird-dispersed fruits) and geographic/climatic 
information (42, 43) to predict naturalization of the same 100 
woody plants for Iowa. A geographic-risk value (G-value) 
was calculated for each species based on its native range 
and the proportion of species from its native range known 
to naturalize in the test area (43, 44). Models that included 
both life-history and geographic-risk components were more 
powerful (classifi ed up to 90% of species) and accurate (error 
rates of 4 to 20%) for risk assessment in Iowa (44) than was 
the continental model (29).

Ideally, new models are validated or rejected by testing 
them against datasets that differ from the dataset used for 
model development (external validation) or through careful 
statistical manipulation of the base dataset itself (internal 
validation) (14). For the types of risk-assessment models 
discussed here, validation can be accomplished in one of 
three ways: [1] internal validation during model development 

by excluding species in the initial dataset through data-
splitting, bootstrapping, and other re-sampling techniques 
(as described in 14); [2] external validation by applying the 
model to a test dataset of new or additional species from the 
same target region; or [3] a more general external validation 
by applying the model to a dataset from another, similar 
region (5, 12, 13, 16, 17, 21).

In this paper, we report on an effort to use the third type of 
validation, by evaluating the performance of four risk-assess-
ment models, fi rst tested in Iowa, on two new species datasets 
developed for the Chicago region, including 28 counties in 
northeastern Illinois, northwestern Indiana, southwestern 
Michigan, and southeastern Wisconsin (Fig. 1).

Materials and Methods
We defi ned two subsets of the Chicago region (Fig. 1) 

to test the continental risk-assessment model developed by 
Reichard and Hamilton (29) and three additional models 
developed by Widrlechner et al. (44) for Iowa. These study 
areas were of comparable area and internally consistent with 
respect to climate and soils, with ‘Chicago A’ comprised 
of counties in Illinois and Wisconsin with soils that are 
primarily calcareous clays and loams (37) and ‘Chicago B’ 
comprised of counties in Indiana and Michigan with soils 
that are primarily sandy, organic, or a combination of the 
two (37). The soils and climate of Chicago A, in terms of 
moisture balance (41) and mean January temperatures (38), 
resemble those found in Iowa more closely than do the soils 
and climate of Chicago B. Thus, we hypothesize that the three 

Fig. 1. Map of the Chicago A and Chicago B study areas.
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models developed for Iowa will have greater applicability in 
Chicago A than in Chicago B.

A set of 135 commonly cultivated species of woody land-
scape plants (Table 1) not known to be native to Chicago 
A in the period predating European settlement in the early 
1800s was identifi ed by staff of the Chicago Botanic Garden 
for the purpose of testing risk-assessment models. A second 
set of 142 commonly cultivated woody species (Table 1) 
not known to be native to Chicago B before the early 1800s 
was identifi ed through initial input from fi ve nursery and 
public garden professionals with extensive experience in 
the region (Steve Bornell, Brian Bunge, Michael Dosmann, 

Robert Schutzki, and Tim Woods), and review by the au-
thors. These sets (Table 1) were initially somewhat larger, 
but were standardized by randomly removing species not 
known to naturalize until approximately 28% of each set 
was comprised of species with a record of naturalizing in at 
least two well-documented sites in their corresponding study 
areas. This was done so the Chicago datasets could directly 
use the three models that were developed from Iowa data, 
where 28% of the analyzed species were known to naturalize 
(44). Naturalization status was determined by reviewing local 
fl oras (6, 32, 39) and consultation with local fl oristic experts 
(Richard Rabeler, Gerould Wilhelm, Dennis Woodland and 

Table 1. Study area and naturalization status of species in Chicago datasets.

 Used in Used in Naturalized in Naturalized in
Speciesz Chicago A Chicago B Chicago A Chicago B

Abies balsamea (L.) Mill. X
Abies concolor (Gordon & Glend.) Lindl. ex Hildebr. X X
Abies fraseri (Pursh) Poir. X
Abies nordmanniana (Steven) Spach X
Acer griseum (Franch.) Pax X
Acer palmatum Thunb. X
Acer platanoides L. X X X X
Acer tataricum L. subsp. ginnala (Maxim.) Wesm. X X X
Actinidia arguta (Siebold & Zucc.) Planch. ex Miq. X X
Aesculus hippocastanum L. X
Aesculus parvifl ora Walter X
Aesculus pavia L. X
Ailanthus altissima (Mill.) Swingle X X X X
Alnus glutinosa (L.) Gaertn. X X X X
Amelanchier alnifolia (Nutt.) Nutt. ex M. Roem. X X
Amelanchier canadensis (L.) Medik. X X
Ampelopsis glandulosa (Wall.) Momiy. X X X
Aristolochia macrophylla Lam. X X
Aronia arbutifolia (L.) Pers. X X
Berberis thunbergii DC. X X X X
Betula pendula Roth X Xy X
Buddleja davidii Franch. X
Buxus microphylla Siebold & Zucc. X
Buxus sempervirens L. X
Callicarpa dichotoma (Lour.) K. Koch X
Callicarpa japonica Thunb. X
Calycanthus fl oridus L. X
Campsis radicans (L.) Seem. ex Bureau X X X X
Caragana arborescens Lam. X X
Carpinus betulus L. X X
Castanea mollissima Blume X
Catalpa speciosa (Warder ex Barney) Warder ex Engelm. X X X X
Celastrus orbiculatus Thunb. X X X X
Cercidiphyllum japonicum Siebold & Zucc. X
Chaenomeles japonica (Thunb.) Lindl. ex Spach X
Chaenomeles speciosa (Sweet) Nakai X
Chamaecyparis obtusa (Siebold & Zucc.) Endl. X
Chionanthus virginicus L. X X
Cladrastis kentukea (Dum. Cours.) Rudd X X
Clematis ternifl ora DC. X
Clethra alnifolia L. X X
Cornus kousa Hance X X
Cornus mas L. X X
Corylus avellana L. X
Corylus colurna L. X
Cotinus coggygria Scop. X
Cotoneaster acutifolius Turcz. X
Cotoneaster apiculatus Rehder & E.H. Wilson X X
Cotoneaster dammeri C. K. Schneid. X
Cotoneaster divaricatus Rehder & E. H. Wilson X
Cotoneaster horizontalis Decne. X
Cotoneaster multifl orus Bunge X
Crataegus laevigata (Poir.) DC. X
Crataegus phaenopyrum (L. f.) Medik. X

Table 1 continued …
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Crataegus viridis L. X
Daphne mezereum L. X
Deutzia gracilis Siebold & Zucc. X X
Deutzia scabra Thunb. X
Diervilla sessilifolia Buckley X
Diospyros virginiana L. X
Elaeagnus angustifolia L. X X X
Elaeagnus commutata Bernh. ex Rydb. X X
Elaeagnus umbellata Thunb. X X X X
Eleutherococcus sieboldianus (Makino) Koidz. X
Euonymus alatus (Thunb.) Siebold X X X X
Euonymus europaeus L. X X
Euonymus fortunei (Turcz.) Hand.-Mazz. X X X X
Euonymus hamiltonianus Wall. X X
Exochorda racemosa (Lindl.) Rehder X
Fagus sylvatica L. X X
Forsythia suspensa (Thunb.) Vahl X
Fothergilla gardenii L. X X
Frangula alnus Mill. X X X X
Halesia tetraptera J. Ellis X
Hamamelis mollis Oliv. X
Hamamelis vernalis Sarg. X X
Hedera helix L. X X X
Heptacodium miconioides Rehder X
Hibiscus syriacus L. X
Hydrangea anomala D. Don X
Hydrangea macrophylla (Thunb.) Ser. X
Hydrangea paniculata Siebold X
Hydrangea quercifolia W. Bartram X X
Hypericum calycinum L. X
Ilex glabra (L.) A. Gray X X
Itea virginica L. X
Juglans regia L. X
Juniperus chinensis L. var. procumbens Endl. X
Juniperus sabina L. X
Juniperus scopulorum Sarg. X X
Juniperus squamata Buch.-Ham. ex D. Don X X
Kalmia latifolia L. X
Kerria japonica (L.) DC. X
Koelreuteria paniculata Laxm. X X
Kolkwitzia amabilis Graebn. X X
Larix decidua Mill. X X
Leucothoe fontanesiana (Steud.) Sleumer X
Ligustrum obtusifolium Siebold & Zucc. X X X X
Ligustrum vulgare L. X X X X
Liquidambar styracifl ua L. X X
Lonicera fragrantissima Lindl. & Paxton X
Lonicera japonica Thunb. X X
Lonicera korolkowii Stapf X
Lonicera maackii (Rupr.) Maxim. X Xy X
Lonicera morrowii A. Gray X X
Lonicera sempervirens L. X X
Lonicera tatarica L. X X X X
Lonicera xylosteum L. X X
Lycium barbarum L. X Xy X
Maclura pomifera (Raf.) C. K. Schneid. X X X X
Magnolia liliifera (L.) Baill. X
Magnolia stellata (Siebold & Zucc.) Maxim. X X
Malus baccata (L.) Borkh. X X
Metasequoia glyptostroboides Hu & W. C. Cheng X X
Microbiota decussata Kom. X X
Morella pensylvanica (Mirb.) Kartesz X X
Morus alba L. X X X X
Phellodendron amurense Rupr. X X
Phellodendron sachalinense (F. Schmidt) Sarg. X X X
Philadelphus coronarius L. X
Picea abies (L.) H. Karst. X X
Picea glauca (Moench) Voss X X
Picea omorika (Pancic) Purk. X X
Picea pungens Engelm. X X

Table 1. Continued …

 Used in Used in Naturalized in Naturalized in
Speciesz Chicago A Chicago B Chicago A Chicago B

Table 1 continued …
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Pieris japonica (Thunb.) D. Don ex G. Don X X
Pinus fl exilis E. James X
Pinus mugo Turra X
Pinus nigra J.F. Arnold X X X X
Pinus ponderosa P&C Lawson X
Pinus sylvestris L. X X X X
Populus alba L. X X X X
Populus simonii Carrière X
Populus xcanescens (Aiton) Sm. X Xy X
Prunus avium (L.) L. X X
Prunus cerasifera Ehrh. X
Prunus mahaleb L. X Xy X
Prunus maritima Marshall X
Prunus padus L. X X
Prunus serrulata Lindl. X X
Prunus subhirtella Miq. X X
Prunus tomentosa Thunb. X
Pseudotsuga menziesii (Mirb.) Franco X
Pyracantha coccinea M. Roem. X X
Quercus acutissima Carruth. X
Quercus robur L. X X
Quercus shumardii Buckley X
Rhamnus cathartica L. X Xy X
Rhododendron catawbiense Michx. X
Rhodotypos scandens (Thunb.) Makino X X
Ribes alpinum L. X
Robinia pseudoacacia L. X X X X
Rosa multifl ora Thunb. X X X X
Rosa rugosa Thunb. X X X
Rosa virginiana Mill. X
Salix alba L. X X X X
Salix caprea L. X X
Salix fragilis L. X X Xy

Salix integra Thunb. X
Salix purpurea L. X X X X
Sambucus nigra L. X
Sorbus alnifolia (Siebold & Zucc.) K. Koch X
Sorbus aucuparia L. X X X X
Spiraea japonica L.f. X X
Spiraea nipponica Maxim. X X
Spiraea prunifolia Siebold & Zucc. X
Spiraea thunbergii Siebold ex Blume X X
Stephanandra incisa (Thunb.) Zabel X
Symphoricarpos orbiculatus Moench X Xy X
Syringa meyeri C. K. Schneid. X
Syringa pubescens Turcz. subsp. patula (Palib.) M. C. Chang & X. L. Chen X
Syringa reticulata (Blume) H. Hara X
Syringa vulgaris L. X X
Taxodium distichum (L.) Rich. X X
Taxus baccata L. X
Taxus cuspidata Siebold & Zucc. X
Thuja plicata Donn ex D. Don X
Tilia cordata Mill. X X
Tilia tomentosa Moench X X
Tsuga canadensis (L.) Carrière X
Ulmus glabra Huds. X
Ulmus parvifolia Jacq. X X
Ulmus pumila L. X X X X
Viburnum carlesii Hemsl. X X
Viburnum farreri Stearn X
Viburnum lantana L. X X X X
Viburnum opulus L. X X X X
Viburnum plicatum Thunb. X
Viburnum rhytidophyllum Hemsl. X
Viburnum sieboldii Miq. X
Weigela fl orida (Bunge) A. DC. X
Wisteria fl oribunda (Willd.) DC. X
Wisteria sinensis (Sims) DC. X
Zelkova serrata (Thunb.) Makino X

Table 1. Continued …

 Used in Used in Naturalized in Naturalized in
Speciesz Chicago A Chicago B Chicago A Chicago B

zTaxonomy follows the GRIN database (35).
yNaturalized in study area, but not included in species analyzed.
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Kay Yatskievych). This effort results in a total of 193 species 
for our analyses.

Separate spreadsheets were compiled containing infor-
mation on nine life-history and invasive characteristics, as 
described by Widrlechner et al. (44), for each set of species 
(i.e., for Chicago A and Chicago B):

Evergreen foliage• 
Fleshy, bird-dispersed fruits• 
Group invasive in North America (including • Euonymus)
Invades outside North America• 
Native to North America• 
Quick maturity• 
Quick vegetative spread• 
Germination pretreatment required• 
Sterile hybrid• 

These data were gleaned from several published and online 
sources, available on request from the authors, and refi ned 
through the collective experiences of Chicago Botanic Gar-
den staff members in observing and cultivating these plants 
in the region by a process of consensus-driven discussions 
and interviews. ‘Group invasive in North America’ as defi ned 
by Reichard and Hamilton (29) was expanded to include the 
genus Euonymus within this category (Reichard, personal 
communication, 2002).

Two additional spreadsheets were compiled with detailed 
information about the native ranges of all 193 species, in-
cluding 424 geographical and political subdivisions for the 
ranges of species included in Chicago A dataset and 459 
subdivisions for the Chicago B dataset. Native-range data 
primarily were obtained from the USDA-ARS Germplasm 
Resources Information Network database (35), supplemented 
by selective use of the USDA-NRCS PLANTS database (36) 
and published fl oras (7, 9, 10, 19, 24, 25, 34).

For every subdivision (and separately for both datasets), 
we calculated the proportion of native species evaluated that 
have naturalized in the study area. Following Widrlechner 
et al. (44), we refer to this proportion as a P ratio. From the 
P ratios, we calculated range-wide, geographic-risk values, 
or G values, for each species by using procedures described 
by Widrlechner et al. (44). For reference, G is the mean of 
the unweighted P ratios for all n geographic subdivisions 
included in a species’ native range, or

 n

G = ( Σ  P ) / n.
 i = 1

The nine life-history and invasive characteristics and G-
values for the 135 species evaluated in the Chicago A tests 
and the 142 species in the Chicago B tests (referred to as 
master datasets) are available at http://www.ars.usda.gov/
Main/docs.htm?docid=17734.

Once the master datasets were assembled and verifi ed, 
we subjected the species therein to four risk-assessment 
models. These models included [1] the ‘Continental Decision 
Tree’ defi ned by Reichard and Hamilton (29), and three ad-
ditional models developed by Widrlechner et al. (44) based 
on an evaluation of data collected in Iowa: [2] the ‘Modi-
fi ed Decision Tree’, which adds ten steps to the Continental 
Decision Tree, and [3] the ‘Decision Tree/Matrix Model’, a 
less complex refi nement focused only on evaluating species 

that required further analysis as a result of the Continental 
Decision Tree, and [4] a new model, generated independently 
from the others, the ‘CART Model’, based on an application 
of Classifi cation and Regression Trees (CART) to the Iowa 
dataset (44).

Each of these four approaches assigned species to one of 
three categories: reject, accept, or further analysis. ‘Reject’ 
indicated a high risk of invasiveness; ‘accept’ indicated 
low-risk species; and the ‘further analysis’ category was 
reserved for species for which the model failed to provide 
clear guidance.

The power and accuracy of the models were assessed 
separately for the Chicago A and Chicago B master datasets 
by methods described in Widrlechner et al. (44). Briefl y, the 
power of each model was measured by calculating Reichard 
and Hamilton’s (29) classifi cation rate, the proportion of 
evaluated species assigned to the ‘reject’ or ‘accept’ catego-
ries. The accuracy of the models was measured by calculating 
two error rates, which document biologically signifi cant and 
horticulturally limiting misclassifi cations, i.e., the propor-
tions of false negatives and false positives, respectively. In 
other words, the assignment of a naturalizing species to the 
‘accept’ category creates a biologically signifi cant error 
by allowing the introduction of a new, potentially invasive 
species, and the assignment of a species with no record of 
naturalization to the ‘reject’ category creates a horticultur-
ally limiting error by excluding a new species with little or 
no risk to natural habitats. Both error rates are expressed as 
proportions of the total number of classifi ed species.

Differences in classifi cation and error rates between the 
Iowa, Chicago A or Chicago B data sets and all external data 
sets were evaluated by using a Chi-square test (8); however, 
this test is not appropriate for comparing classifi cation or 
error rates among the Iowa, Chicago A and Chicago B data 
sets, because the Chi-square test assumes independence 
among observations. Such an assumption is invalid when 
the same species are components of two data sets and/or 
are tested in two models. To compare classifi cation rates 
between two models when applied to the same data set, we 
used McNemar’s test for paired responses (8). This test al-
lows analysis of paired data and the difference in resulting 
classifi cation and error rates.

For all other rate comparisons, such as those of horticul-
turally limiting error rates in the Chicago A and Chicago B 
data sets, the data are a mix of paired responses (for species 
evaluated in both data sets) and unpaired responses (for those 
evaluated in only one data set). There is no named statistical 
test for this situation. A likelihood-ratio test was developed to 
test the null hypothesis of no difference in error rates between 
two models or two data sets (available from the authors on 
request). Because the sample sizes were often small, p-values 
were computed by randomization (31).

In addition, for those species included in at least two of 
three comparable datasets, i.e., in Iowa, Chicago A, and Chi-
cago B, we calculated correlation coeffi cients for G-values 
in pairs of data sets to evaluate the degree of similarity 
between these three regions in risk directly related to the 
species’ native ranges. A correlation of 1 indicates a perfect 
correspondence between G-values. This would be true if 
regional differences in the underlying P-values (risk values 
for specifi c geographic subdivisions) that serve as the basis 
for the calculation of G-values are small. The hypothesis 
that the correlation between Chicago A and Iowa should be 
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higher than that for Chicago B and Iowa was tested by using 
a Fisher Z transformation (31).

Results and Discussion
Continental decision tree. Both sets of non-native, woody 

species (representing Chicago A and Chicago B) (Table 1) 
were evaluated with the Continental Decision Tree developed 
by Reichard and Hamilton (29). The decision tree was able to 
classify 71.9% of species in Chicago A and 76.1% of species 
in Chicago B for a mean classifi cation rate of 74% (Table 2). 
This rate approximates the 76% classifi cation rate reported 
in a recent study of non-native woody plants in the Czech 
Republic by Křivánek and Pyšek (21). Chicago classifi cation 
rates approach those reported by Reichard and Hamilton (29) 
(80% classifi cation) more closely than did rates reported in 
the Iowa study by an average of 9%, but the differences are 
not statistically signifi cant (p > 0.15).

While increased classifi cation rates are generally desir-
able, in the case of the Chicago datasets, we did observe 
small increases in error rates compared to the Iowa study. 
Only 69 of the 97 (71.1%) classifi cations in Chicago A and 
80 of the 108 (74.1%) classifi cations in Chicago B were cor-
rect, producing a mean error rate of 27.4%. Mean error rates 
determined by Widrlechner et al. (44) in Iowa and Křivánek 
and Pyšek (21) in the Czech Republic were 20%, not statisti-
cally signifi cant from the fi ndings in our tests of Chicago A 
(p > 0.09) or Chicago B (p > 0.2). Most misclassifi cations 
from the Chicago A and Chicago B datasets were rejections 
of species not known to naturalize, or horticulturally limiting 
errors (Table 2). This is analogous to fi ndings by Křivánek 
and Pyšek (21) who also reported a higher proportion of 
such rejections. Of the species misclassifi ed in the Chicago 
datasets, about 60% resulted from the short, right side of 
the decision tree (29). This suggests that additional steps 
incorporated into this branch of the tree during the Iowa 
study (44) (producing the Modifi ed Decision Tree) would 
also be warranted for the Chicago datasets.

The remaining misclassifi cations (a mean value of 5.4% 
for Chicago A and B, representing 5 and 6 species, respec-
tively) resulted in the acceptance of species already known 
to naturalize, or biologically signifi cant errors. Those species 
that resulted in biologically signifi cant errors when evalu-
ated are listed by model in Table 3. Although the estimated 
biologically signifi cant error rates are slightly larger for the 

two Chicago datasets than for the Iowa dataset, the differ-
ences are not statistically signifi cant (p > 0.50).

Overall, our assessment of the Chicago datasets reinforces 
the need for revisions to the Continental Decision Tree in 
order to enhance both classifi cation rates and accuracy.

Modifi ed decision tree. Widrlechner et al. (44) developed 
the Modifi ed Decision Tree to increase the power of the Con-
tinental Decision Tree by reexamining the more problematic 
unclassifi ed and/or misclassifi ed species. This involved two 
primary modifi cations: [1] reevaluating the ‘further analysis’ 
species based upon G-values (risk related to the species’ 
native range) and the presence or absence of fl eshy, bird-
dispersed fruits with the goal of increasing classifi cation 
rates, and [2] reevaluating ‘reject’ species from the right-hand 
side of the decision tree to reduce horticulturally limiting 
errors. Both of these modifi cations produced results for the 
Chicago datasets that resembled results for the Iowa data: 
increased classifi cation rates and decreased horticulturally 
limiting errors. Chicago A’s classifi cation rate increased to 
92.6% and Chicago B’s classifi cation rate increased to 88.7% 
(Table 2), representing a mean increase of 16.7% over the 
Continental Decision Tree, both differences highly signifi -
cant (p < 0.0001 for Chicago A and p = 0.0005 for Chicago 
B). This is a smaller increase than observed in the Iowa data 
(25.0%) (44), but these increases in classifi cation rates are not 
signifi cantly different from each other (p = 0.38).

Additional validation is found in decreased horticultur-
ally limiting error rates for both Chicago datasets (Table 2). 
On average, the Chicago horticulturally limiting error rate 
decreased by 3.3% compared to the Continental Decision 
Tree, similar to Iowa’s 3.6% decrease. Where this model fails 
to perform adequately is in the biologically signifi cant error 
rate, with rates of 7.1 to 8.0%. These values exceed the rate 
reported from the Iowa dataset, but the differences are not 
statistically signifi cant (p = 0.51 for Chicago A and Iowa, p 
= 0.52 for Chicago B and Iowa). The list of species misclassi-
fi ed in this way for the Chicago datasets resembled that from 
the Continental Decision Tree with some additions (Table 3). 
Taking this shortcoming into account, the overall accuracy 
of the Modifi ed Decision Tree for the Chicago datasets was 
little improved over the Continental Decision Tree. Of the 
125 classifi ed species for Chicago A, only 88 were correct 
(70.4%); of the 126 classifi ed species for Chicago B, 97 were 

Table 2. Summary of classifi cation and error rates for four risk-assessment models by data set.

Model Classifi cation rate (%) Biologically signifi cant error rate (%) Horticulturally limiting error rate (%)

Continental Decision Tree
 Chicago A 71.9 5.2 23.7
 Chicago B 76.1 5.6 20.4
 Iowa Data 65.0 3.1 16.9
Modifi ed Decision Tree
 Chicago A 92.6 8.0 21.6
 Chicago B 88.7 7.1 15.9
 Iowa Data 90.0 3.3 13.3
Decision Tree/Matrix Model
 Chicago A 87.4 5.9 21.2
 Chicago B 85.2 5.0 18.2
 Iowa Data 85.0 3.5 16.4
CART Model
 Chicago A 70.4 8.4 9.5
 Chicago B 72.5 9.7 4.5
 Iowa Data 81.0 2.5 3.7
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correct (77%). This produced a mean error rate of 26.3% — 
not signifi cantly different from the overall error rates for the 
original decision tree (p = 0.91 for Chicago A and p = 0.75 for 
Chicago B). In summary, the Modifi ed Decision Tree yielded 
the highest classifi cation rate of the tested models (Table 2), 
but did not improve overall accuracy in these tests.

Decision tree/Matrix model. A second refi nement of the 
Continental Decision Tree based on Iowa data produced a 
model focused on reevaluating ‘further analysis’ species by 
using G-values and fl eshy, bird-dispersed fruits (44). Model 
classifi cation rates for both Chicago datasets resembled those 
for the Iowa data (Table 2). The Decision Tree/Matrix Model 
was able to classify a mean of 86.2% species for Chicago A 
and B compared to Iowa’s classifi cation rate of 85%, gener-
ally supporting the model’s ability to increase classifi cation 
rates. However, the improvement in classifi cation rates over 
those produced by the Continental Decision Tree for the 
Chicago A dataset (15.5%) resembled that reported in the 
Iowa study (20.0%) (p = 0.92), while the improvement for the 
Chicago B dataset (9.1%) was signifi cantly less (p = 0.002). In 
part, this can be explained by the higher classifi cation rate of 
the Continental Decision Tree for the Chicago B dataset.

Application of the Decision Tree/Matrix Model to the Iowa 
data yielded relatively little change in accuracy. This also 
was true for the Chicago datasets with respect to biologically 
signifi cant errors. Of the three new models tested herein, 
the Decision Tree/Matrix Model produced the lowest bio-
logically signifi cant error rate; these rates were not reduced, 
however, from those produced by the Continental Decision 
Tree. Horticulturally limiting errors decreased slightly more 
for both Chicago datasets than they did for the Iowa data. 
On average, errors for Chicago A and Chicago B decreased 
by 2.3%, similar to the 0.5% decrease for Iowa (44). The 
species misclassifi ed in both the Continental Decision Tree 
and the Decision Tree/Matrix Model are almost identical 
(Table 3), suggesting that the increased classifi cation rates 

were primarily responsible for the decreased error rates in 
the Chicago datasets. Overall, our analysis confi rms that the 
Decision Tree/Matrix Model from the Iowa study improves 
classifi cation rates over the Continental Decision Tree but 
offers little in the way of improved accuracy.

CART model. This fi ve-step decision tree was developed 
independently of the Continental Decision Tree and relies 
on only three characteristics: quick vegetative spread, fl eshy, 
bird-dispersed fruits, and G-values. This model was very ef-
fective in the Iowa study (44), but was not subject to external 
validation prior to our study. Although this model is much 
simpler than the others, its classifi cation rates for the Chicago 
A and Chicago B datasets were only slightly lower than those 
obtained by the Continental Decision Tree (Table 2), and 
these differences were not statistically signifi cant (p = 0.89 
for Chicago A, p = 0.54 for Chicago B). As noted in the Iowa 
study (44), encouragingly, it also produced signifi cantly lower 
rates of horticulturally limiting errors than did any other 
model. Chicago A had 9 species (9.5%) and Chicago B had 
only 5 species (4.9%) that resulted in horticulturally limiting 
errors. On average, this represents a 15.1% decrease in the 
error rates generated by the Continental Decision Tree (p = 
0.027 for Chicago A, p = 0.037 for Chicago B); greater than 
the change reported for the Iowa data (13.2%, p = 0.023).

However, biologically signifi cant error rates for the CART 
Model were among the highest of all models evaluated in our 
tests (Table 2), which was unexpected since it had the low-
est such error rate when evaluated on the Iowa dataset that 
was used to develop it (44). The actual number of species 
misclassifi ed, a total of 11 (Table 3), was actually one less 
than the total number of species that produced biologically 
signifi cant errors from the Modifi ed Decision Tree, but 
lower classifi cation rates in the CART Model resulted in 
a proportionately higher error rate. Therefore, we cannot 
recommend the CART Model per se for use in the Chicago 
region given its rather low classifi cation rates and higher 

Table 3. Species producing biologically signifi cant errors for Chicago A and Chicago B.

Continental Decision Tree Modifi ed Decision Tree

Berberis thunbergii DC. Acer platanoides L.
Catalpa speciosa (Warder ex Barney) Warder ex Engelm. Berberis thunbergii DC.
Elaeagnus umbellata Thunb. Campsis radicans (L.) Seem ex Bureau
Frangula alnus Mill. Catalpa speciosa (Warder ex Barney) Warder ex Engelm.
Phellodendron amurense Rupr. Elaeagnus umbellata Thunb.
Philadelphus coronarius L. Frangula alnus Mill.
Symphoricarpos orbiculatus Moench Maclura pomifera (Raf.) C. K. Schneid.
 Phellodendron amurense Rupr.
 Philadelphus coronarius L.
 Pinus nigra J.F. Arnold
 Pinus sylvestris L.
 Symphoricarpos orbiculatus Moench

Decision Tree/Matrix Model CART Model

Berberis thunbergii DC. Acer platanoides L.
Campsis radicans (L.) Seem. ex Bureau Berberis thunbergii DC.
Catalpa speciosa (Warder ex Barney) Warder ex Engelm. Elaeagnus umbellata Thunb.
Elaeagnus umbellata Thunb. Euonymus alatus (Thunb.) Siebold
Frangula alnus Mill. Euonymus fortunei (Turcz.) Hand.-Mazz.
Maclura pomifera (Raf.) C. K. Schneid. Euonymus hamiltonianus Wall.
Phellodendron amurense Rupr. Maclura pomifera (Raf.) C. K. Schneid.
Philadelphus coronarius L. Philadelphus coronarius L.
Symphoricarpos orbiculatus Moench Pinus nigra J.F. Arnold
 Pinus sylvestris L.
 Rhodotypos scandens (Thunb.) Makino
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rates of biologically signifi cant errors. However, it has fewer 
steps and is easier to apply than the Modifi ed Decision Tree 
or the Decision Tree/Matrix Model, suggesting it might be 
worthy of further refi nement or use in conjunction with 
another model that ultimately would result in fewer biologi-
cally signifi cant errors.

Geographic-risk value comparison. Differences in geo-
graphic-risk values between the Iowa data and the Chicago 
datasets could be one source of decreased power and/or ac-
curacy in our evaluation. However, there are strong, highly 
signifi cant correlations in G-values between each dataset 
(Table 4), suggesting that these G-values are consistent 
enough among the datasets that the models that use them 
should not be weakened on this basis.

Although the correlations are strong (Table 4), they are 
not perfect. Interesting, but subtle differences in correlations 
between the three pairwise comparisons were discovered. 
As predicted based on relative differences in climatic and 
edaphic conditions, Chicago A was most similar to Iowa with 
a correlation of 0.97 (Table 4). Chicago B and Iowa had a 
lower correspondence with a correlation of 0.88. These two 
correlations are signifi cantly different (p < 0.0001), imply-
ing there are greater regional differences between Iowa and 
Chicago B than between Iowa and Chicago A.

Factors that contribute to deviations from a perfect correla-
tion between sets of G-values can be studied by examining 
the ‘outlier’ species with G-values that fall farthest from 
the linear relationship. In general, these outliers were more 
likely to have a small ‘n’ in terms of the number of geo-
graphic subdivisions where each species was native. Of the 
seven most extreme outliers, six species had ranges of 15 or 
fewer geographic subdivisions, while the average species in 
this study had a native range with a mean of 35 geographic 
subdivisions in the Chicago A dataset and a mean of 38 
subdivisions in the Chicago B dataset. These species with 
limited geographic ranges displayed more highly divergent 
G-values than those with broader ranges, which would tend to 
diminish the effects of any local differences in the underlying 
P-values among datasets.

Comparative model performance. Since Chicago A and 
Iowa are more analogous to each other in terms of environ-
mental conditions and in G-values, one might also expect 
to see this refl ected in results from the four risk-assessment 
models. However, there were no consistent differences in 
the power and accuracy of models developed for Iowa when 
applied to the Chicago A dataset than when applied to the 
Chicago B dataset (Table 2). In fi ve of six cases, error rates 
for the Iowa models applied to the Chicago B dataset were 
actually lower than for Chicago A. These inconsistencies 
lead us to reject our geographic hypothesis when applied 
to model performance, where we expected our tests of the 

Chicago A dataset to more closely resemble past performance 
in Iowa (44). We recognize that many factors in addition to 
G-values can affect model outcomes, which complicates the 
determination of true confounding factors.

Of the models we used to evaluate non-native woody spe-
cies in the Chicago region, the Decision Tree/Matrix Model 
gave the most favorable results, with a high classifi cation rate 
(a result analogous to the Iowa data) and a slight decrease 
in the horticulturally limiting error rate from that of the 
Continental Decision Tree without increasing the biologi-
cally signifi cant error rate. Although its results were not as 
consistently positive, the CART model presented advantages 
in its simplicity and low rates of horticulturally limiting 
errors, making it a promising model for further refi nement, 
with a focus on ways to reduce its relatively high rate of 
biologically signifi cant errors.

Another variation on models developed by Widrlechner 
et al. (44) from Iowa data was evaluated by Jefferson et al. 
(16) at the Chicago Botanic Garden alongside the Australian 
Weed Risk-Assessment (WRA) protocol. They reported 
their variation on the Iowa model was 80–100% accurate 
when species placed in the ‘further analysis’ category were 
assessed correctly (16). In some circumstances, lower classi-
fi cation rates may not be a signifi cant impediment, especially 
when those using a model have the capacity to conduct the 
further analyses needed. However, such testing is typically 
time-consuming, expensive, and as yet, poorly defi ned.

To provide a larger context, the classifi cation and error 
rates presented in our study can also be compared to the 
classifi cation and error rates produced by the Australian 
WRA in a larger meta-analysis presented by Gordon et al. 
(12). In seven geographically diverse studies, 1183 species 
tests were conducted with the WRA resulting in a mean 
classifi cation rate of 83.1% (range 71 to 92%). Of the 983 
species that were accepted or rejected by the WRA, the mean 
false negative rate (analogous to our biologically signifi cant 
error rate) was 7.0% (range 0 to 12.7%), and the mean false 
positive rate (analogous to our horticulturally limiting error 
rate) was 4.2% (range 1.9 to 10.5%). Our results generally 
fall within the ranges of WRA classifi cation rates and false 
negative rates, but only the CART model has comparable 
false positive rates.

With these considerations in mind, we intend to assemble 
and evaluate additional datasets from the Midwestern United 
States to refi ne and validate existing risk-assessment models 
for non-native woody plants and to defi ne new ones, with the 
assistance of a new statistical approach based on Random 
Forest modeling (2). Our ultimate goal is to produce regional 
models that are more accurate, powerful, and easy to use 
than those currently available. However, it is important 
to remember that not all species that will naturalize in a 
region over time have already done so. On average, woody 
species in Brandenderg, Germany, had been cultivated for 
147 years before becoming naturalized (20). Thus, some 
of the reported horticulturally limiting errors that models 
generate may actually portend future naturalization events. 
In contrast, some species that were included in our study as 
having naturalized may only do so under limited conditions 
that do not lead to invasions or other serious threats. Future 
analyses should incorporate the degree of invasiveness, as 
discussed by Gordon et al. (12), to determine how the most 
invasive species differ from those with well-documented 
records of limited naturalization without invasion.

Table 4. Correlations comparing geographic risk values of common 
species in the Chicago and Iowa datasets.

 Species in  Fisher Zr
Comparison common Correlation ± s.e.

Chicago A to Chicago B 84 0.92 1.58 ± 0.11
Chicago A to Iowa 53 0.97 2.17 ± 0.14
Chicago B to Iowa 63 0.88 1.36 ± 0.13
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